We're glad that you are using Kaplan's materials to prepare for the GRE and wish you all the best with your studies. We strive to provide the most up-to-date and error-free materials, but sometimes official testing policies change or inaccuracies slip through. Because we promptly make corrections with each new printing, your copy of this edition may or may not already include the following updates.

If you have any questions about your Kaplan materials, please contact us at booksupport@kaplan.com.

Please note the following updates and corrections:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>152</td>
<td>Choice D should be “imprudent,” not “pacify.”</td>
</tr>
<tr>
<td>8</td>
<td>168</td>
<td>There are missing instructions at the top of the page: “For Questions 11–14, select two answer choices.”</td>
</tr>
<tr>
<td>15</td>
<td>334</td>
<td>The correct answer to Question 1 should be “(−5, −8).”</td>
</tr>
<tr>
<td>15</td>
<td>335</td>
<td>The correct answer to Question 1 should be “(−5, −8).”</td>
</tr>
</tbody>
</table>
| 19 | 405 | For question 5, the explanation should be: 5. D
To find the average, add the quantities together and divide by 4: \((2x + 3) + (5x - 4) + (6x - 6) + (3x - 1) = 16x - 8\) and \(\frac{16x - 8}{4} = 4x - 2\). The correct choice is (D). |
| 19 | 406 | For question 10, the explanation should say: 10. B
Try to set the quantities equal. Could the tens digit of \(y\) be 4? If it is, and the thousands digit is 2.5 times the tens digit, then the thousands digit must be . . . 10? That can’t be right. A digit must be one of the integers 0–9; 10 isn’t a digit. Therefore, 4 is too big to be the tens digit of \(y\). You don’t know what the tens digit of \(y\) is, but you know that it must be less than 4. Quantity B is greater than Quantity A. |
For question 11, the explanation should be:

11. **D**

With symbolism problems like this, it sometimes helps to put the definition of the symbol into words. For this symbol, you can say something like "$x \Phi y$ means take the sum of the two numbers and divide that by the difference of the two numbers." One good way to do this problem is to Pick Numbers. You know that p is positive and q is negative. So suppose p is 1 and q is -1. Figure out what $p \Phi q$ is first. You start by taking the sum of the numbers, or $1 + (-1) = 0$. That's the numerator of the fraction, and you don't really need to go any further than that. Whatever their difference is, because the numerator is 0, the whole fraction must equal 0. (The difference can't be 0 also, since $p = q$.) So that's $p \Phi q$.

Now what about $q \Phi p$? Well, that's going to have the same numerator as $p \Phi q$: 0. The only thing that changes when you reverse the order of the numbers is the denominator of the fraction. So $q \Phi p$ has a numerator of 0, and that fraction must equal 0 as well.

So you've found a case where the quantities are equal. Try another set of values and see whether the quantities are always equal. If $p = 1$ and $q = -2$, then the sum of the numbers is $1 + (-2)$ or -1. So that's the numerator of the fraction in each quantity. Now for the denominator of $p \Phi q$, you need $p - q = 1 - (-2) = 1 + 2 = 3$. Then the value of $p \Phi q$ is $\frac{-1}{3}$.

The denominator of $q \Phi p$ is $q - p = -2 - 1 = -3$. In that case, the value of $q \Phi p$ is $\frac{-1}{-3}$ or $\frac{1}{3}$. The quantities are different; therefore, the answer is (D).

For question 16, the explanation should be:

16. **B**

The first graph shows the beginning and ending prices. Start by “eyeballing” the two bars for each of the five funds. Fund E was flat, so eliminate that one. Fund D had a slight increase, but, since the question asks for the greatest percent increase and Fund D had a relatively high beginning price, it does not have the greatest percent increase.

You might be able to infer that Fund B had the greatest percent increase since its starting value was less than those of Fund A and Fund C, but here are the calculations to confirm that. Use the percent change formula to compare the increases of these three funds:

Percent change = \(\frac{\text{New value} - \text{Original value}}{\text{Original value}} \times 100\% \).

Fund A had an original price of $24 and a new price of $28, so the percent change was

\[
\frac{28 - 24}{24} \times 100\% = \frac{4}{24} \times 100\% = \frac{1}{6} \times 100\% = 16.67\%.
\]

For Fund B:

\[
\frac{16 - 12}{12} \times 100\% = \frac{4}{12} \times 100\% = \frac{1}{3} \times 100\% = 33.33\%.
\]

For Fund C:

\[
\frac{22 - 20}{20} \times 100\% = \frac{2}{20} \times 100\% = \frac{1}{10} \times 100\% = 10.00\%.\]

So, Fund B had the greatest percentage increase, and (B) is correct.

For question 17, the explanation should be:

17. $50,000

Extract the per share prices of the two funds from the first chart and multiply each by the number of shares shown on the second chart. For Fund C, that is $20/share \times 1,000$ shares = $20,000. For Fund E, the value is $50/share \times 600$ shares = $30,000. Thus, the total is $20,000 + 30,000 = \$50,000$.
For question 18, the explanation should be:

18. A
The dollar value increase of each fund is the price increase per share times the number of shares held. For Fund A, that was \((28 - 24)(600) = (4)(600) = 2,400\). Fund B increased by \((16 - 12)(500) = (4)(500) = 2,000\). The increase in Fund C was \((22 - 20)(1000) = (2)(1000) = 2,000\). The value of the investment in Fund D increased by \((42 - 40)(300) = (2)(300) = 600\). Fund E’s price did not increase, so the correct choice is (A).

For question 19, the explanation should be:

19. B
Simplify each inequality to restate them in terms of \(x\) and \(y\). Divide all the terms of \(-30 \leq 6x \leq 60\) by 6 to get \(-5 \leq x \leq 10\). To simplify \(40 \geq 2y + 4 \geq 8\), subtract 4 from each term to get \(36 \geq 2y \geq 4\). Then, divide through by 2 to see that \(18 \geq y \geq 2\). The maximum value of \(x - y\) will be the greatest possible value of \(x\) minus the least possible value of \(y\). This is \(10 - 2\), so the correct answer is 8.

For question 20, the explanation should be:

20. D
Although there are 6 numbers on the die, when it comes to evens and odds, there are only two outcomes of a roll. Thus, for three rolls, there are \(2 \times 2 \times 2 = 8\) equally possible outcomes: EEE, EEO, EOE, EOO, OOE, OEO, and OEE. Three of these, EOO, OOE, and OEO, result in exactly one even number. Use the probability formula

\[
\text{Probability} = \frac{\text{Number of desired outcomes}}{\text{Number of total possible outcomes}}
\]

The decimal equivalent \(\frac{3}{8}\) is 0.375, so (D) is correct.

Only questions 16, 19, and 20 refer to the graphs on page 413. Questions 17 and 18 can be answered without reference to the graphs.

For example 65, “How to find an Average Rate,” the Setup calculations should show “75,000 + 45,000” instead of “75,000 + 45,00”.